ASCO 2023/ESMO BC 2023 Presentation Materials (vol.2)

ENHERTU®

- DESTINY-PanTumor02
- Meric-Bernstam, FM. et al., ASCO 2023 \#3000 Oral
- HERALD/EPOC1806 study
- Taniguchi et al., ASCO 2023, \#3014 Poster

Dato-DXd

TROPION-Lung02

- Goto, Y. et al., ASCO 2023 \#9004 Oral

HER3-DXd

- BRE-354 study
- Hamilton, E. et al., ASCO 2023 \#1004 Oral
- ICARUS-Breast01 study
- Pistilli et al., ESMO Breast 2023, \#1890 Oral
- SOLTI TOT-HER3 study
- Oliveira et al. ESMO Breast 2023 \#124O Oral
- Brasó-Maristany et al. ESMO Breast 2023 \#3MO Oral
- Oliveira et al. ESMO Breast 2023 \#155TiP Poster

Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: DESTINY-PanTumor02 interim results

Funda Meric-Bernstam, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Additional authors:
Vicky Makker, Ana Oaknin, Do-Youn Oh, Susana Banerjee, Antonio González-Martín,
Kyung Hae Jung, Iwona Ługowska, Luis Manso, Aránzazu Manzano, Bohuslav Melichar, Salvatore Siena, Daniil Stroyakovskiy, Chiedozie Anoka, Yan Ma, Soham Puvvada, Jung-Yun Lee

Trastuzumab Deruxtecan (T-DXd) was Designed with Seven Key Attributes

T-DXd is an ADC with three components:

1. A humanized anti-HER2 $\operatorname{lgG} 1 \mathrm{mAb}$ with the same amino acid sequence as trastuzumab
2. A topoisomerase I inhibitor payload, an exatecan derivative
3. A tetrapeptide-based cleavable linker

${ }^{\text {a }}$ The clinical relevance of these features is under investigation.
ADC, antibody-drug conjugate; HER2, human epidermal growth factor receptor 2; IgG1, imnunoglobulin G1; mAb, monoclonal antibody; T-DXd, trastuzumab deruxtecan,
4. Nakada T, et al. Chem Pham Bull (Tokyo), 2019;67(3):173-185. 2. Ogitani Y, et al. Clin Cancer Res. 2016;22(20):5097-5108. 3. Trail PA, et al. Pharnacol Ther. 2018;181:126-142.
5. Okamoto H, et al. Xenobiotica. 2020;50(10):1242-1250. 5. Nagai Y, et al. Xenobiotica. 2019;49(9):1086-1096.

Seven Key Attributes ${ }^{\text {a, }, 1-5}$

Payload mechanism of action: topoisomerase I inhibitor

High potency of payload
High drug-to-antibody ratio ≈ 8
Payload with short systemic half-life
Stable linker payload
Tumor-selective cleavable linker
Bystander antitumor effect

Seven Key Attributes ${ }^{\text {a }, 1-5}$
Payload mechanism of action: topoisomerase I inhibitor
High potency of payload
High drug-to-antibody ratio ≈ 8
Payload with short systemic half-life
Stable linker payload
Tumor-selective cleavable linker
Bystander antitumor effect

Unmet Need in HER2-Expressing Tumors

- T-DXd has become a standard of care in HER2-expressing unresectable/metastatic breast cancer, HER2-positive locally advanced/metastatic gastric/GEJ cancer and HER2 (ERBB2)mutant unresectable/metastatic NSCLC ${ }^{1-4}$
- Although testing is not routine, HER2 expression (IHC 3+ or IHC $2+$) is seen in a wide range of other solid tumors and is associated with a biologically aggressive phenotype ${ }^{5,6}$
- For HER2-expressing tumors without approved HER2-targeted treatments, there is an unmet need for effective therapies, particularly for patients with disease refractory to standard-of-care therapies
- In early-phase studies, T-DXd has demonstrated antitumor activity in other HER2-expressing malignancies, including colorectal, salivary gland, biliary tract, and endometrial cancers ${ }^{7,8}$

DESTINY-PanTumor02: A Phase 2 Study of T-DXd for HER2-Expressing Solid Tumors

An open-label, multicenter study (NCT04482309)

- Advanced solid tumors not eligible for curative therapy
- $2 \mathrm{~L}+$ patient population
- HER2 expression (IHC 3+ or 2+)
- Local test or central test by Herceptest if local test not feasible (ASCO/CAP gastric cancer guidelines $\left.{ }^{1}\right)^{\mathrm{a}}$
- Prior HER2-targeting therapy allowed
- ECOG/WHO PS 0-1

Primary endpoint

- Confirmed ORR (investigator) ${ }^{\text {c }}$

Secondary endpoints

- DOR ${ }^{\text {c }}$
- DCR ${ }^{\text {c }}$
- PFS ${ }^{\text {c }}$
- OS
- Safety

Data cut-off for analysis:

- Nov 16, 2022

Patient Disposition

	Cervical	Endometrial	Ovarian	BTC	Pancreatic	Eladder	Other	All patients
Patients treated, n	40	40	40	41	25	41	40	267
Ongoing treatment at DCO, n (\%)	10 (25.0)	14 (35.0)	6 (15.0)	3 (7.3)	1 (4.0)	5 (12.2)	5 (12.5)	44 (16.5)
Discontinued treatment, $\mathrm{n}(\%)$	30 (75.0)	26 (65.0)	34 (85.0)	38 (92.7)	24 (96.0)	36 (87.8)	35 (87.5)	223 (83.5)
Disease progression	21 (52.5)	18 (45.0)	29 (72.5)	22 (53.7)	17 (68.0)	26 (63.4)	23 (57.5)	156 (58.4)
Adverse event	4 (10.0)	2 (5.0)	3 (7.5)	8 (19.5)	3 (12.0)	4 (9.8)	6 (15.0)	30 (11.2)
Other ${ }^{\text {b }}$	5 (12.5)	6 (15.0)	2 (5.0)	8 (19.5)	4 (16.0)	6 (14.6)	6 (15.0)	37 (13.9)
Median follow up at DCO, months (range)	$\begin{gathered} 7.2 \\ (0.9-23.0) \end{gathered}$	$\begin{gathered} 14.6 \\ (0.8-24.2) \end{gathered}$	$\begin{gathered} 12.7 \\ (0.7-23.7) \end{gathered}$	$\begin{gathered} 6.0 \\ (0.7-20.0) \end{gathered}$	$\begin{gathered} 4.9 \\ (1.1-19.8) \end{gathered}$	$\begin{gathered} 12.0 \\ (0.4-21.2) \end{gathered}$	$\begin{gathered} 12.0 \\ (0.7-23.9) \end{gathered}$	$\begin{gathered} 9.7 \\ (0.4-24.2) \end{gathered}$
Median duration of treatment at DCO, months (range)	$\begin{gathered} 5.5 \\ (0.7-19.8) \end{gathered}$	$\begin{gathered} 9.0 \\ (0.7-24.4) \end{gathered}$	$\begin{gathered} 5.9 \\ (0.7-23.0) \end{gathered}$	$\begin{gathered} 3.5 \\ (0.7-20.1) \end{gathered}$	$\begin{gathered} 2.1 \\ (0.7-11.0) \end{gathered}$	$\begin{gathered} 6.2 \\ (0.4-18.0) \end{gathered}$	$\begin{gathered} 6.9 \\ (0.7-19.9) \end{gathered}$	$\begin{gathered} 5.5 \\ (0.4-24.4) \end{gathered}$

Baseline Characteristics

		All patients $(\mathrm{N}=267)$
HER2 testing for eligibility,$n(\%)^{a}$	Local	205 (76.8)
	Central	61 (22.8)
	Unknown ${ }^{\text {b }}$	1 (0.4)
HER2-expression for eligibility, n (\%) ${ }^{\text {a }}$	IHC 3+	108 (40.4)
	IHC 2+	153 (57.3)
	IHC 1+c	5 (1.9)
	Unknown ${ }^{\text {b }}$	1 (0.4)
Centrally confirmed HER2 status for efficacy evaluation, n (\%)	IHC 3+	75 (28.1)
	IHC 2+	125 (46.8)
	IHC 1+	25 (9.4)
	IHC 0	30 (11.2)
	Unknown ${ }^{\text {d }}$	12 (4.5)

[^0]ASCO 2023 \#3000 Oral

Efficacy endpoints: ORR, DCR and DOR

		Cervical ($\mathrm{n}=40$)	$\begin{aligned} & \text { Endometrial } \\ & (\mathrm{n}=40) \end{aligned}$	Ovarian $(n=40)$	$\begin{aligned} & \text { BTC } \\ & (\mathrm{n}=41) \end{aligned}$	Pancreatic ($\mathrm{n}=25$)	Eladder $(n=41)$	Other ($\mathrm{n}=40$)	All patients $(\mathrm{N}=267)$
Investigator assessment									
ORR, n (\%)		20 (50.0)	23 (57.5)	18 (45.0)	9 (22.0)	1 (4.0)	16 (39.0)	12 (30.0)	99 (37.1)
Best overall response, n (\%)	Complete response	2 (5.0)	7 (17.5)	4 (10.0)	1 (2.4)	0	1 (2.4)	0	15 (5.6)
	Partial response	18 (45.0)	16 (40.0)	14 (35.0)	8 (19.5)	1 (4.0)	15 (36.6)	12 (30.0)	84 (31.5)
	Stable disease	12 (30.0)	13 (32.5)	14 (35.0)	25 (61.0)	17 (68.0)	18 (43.9)	24 (60.0)	123 (46.1)
	PD	7 (17.5)	4 (10.0)	7 (17.5)	7 (17.1)	7 (28.0)	7 (17.1)	3 (7.5)	42 (15.7)
	Not evaluable	1 (2.5)	0	1 (2.5)	0	0	0	1 (2.5)	3 (1.1)
DCR ${ }^{\text {a }}$ at 12 weeks, n (\%)		27 (67.5)	32 (80.0)	28 (70.0)	27 (65.9)	$9(36.0)$	29 (70.7)	30 (75.0)	182 (68.2)
Median DOR, months ($95 \% \mathrm{Cl}$)		$\begin{gathered} 9.8 \\ (4.2-\mathrm{NE}) \end{gathered}$	$\begin{gathered} \mathrm{NR} \\ (9.9-\mathrm{NE}) \end{gathered}$	$\begin{gathered} 11.3 \\ (4.1-\mathrm{NE}) \end{gathered}$	$\begin{gathered} 8.6 \\ (2.1-\mathrm{NE}) \end{gathered}$	NR	$\begin{gathered} 8.7 \\ (4.3-11.8) \end{gathered}$	$\begin{gathered} \mathrm{NR} \\ (4.1-\mathrm{NE}) \end{gathered}$	$\begin{gathered} 11.8 \\ (9.8-\mathrm{NE}) \end{gathered}$
Independent central review: ORR, n (\%)		16 (40.0)	21 (52.5)	17 (42.5)	11 (26.8)	3 (12.0)	17 (41.5)	13 (32.5)	98 (36.7)

[^1]BTC, biliary tract cancer; Cl , confidence interval; DCR, disease control rate; DOR, duration of response; $N E$, not estimable; NR, not reached; ORR, objective response rate; PD, progressive disease
ASCO 2023 \#3000 Oral

Objective Response Rate by HER2 status

 and patients with centrally confirmed HER2 IHC $3+(\mathrm{n}=46)$ or $\operatorname{IHC} 2+(\mathrm{n}=34)$ status. "Responses in extramammary Pagets disease, head and neck cancer, oropharyngeal neoplasm, and salivary gland cancer. BTC, biliary tract cancer; Cl , confidence interval; DOR, duration of response; IHC, immunohistochemistry; $N E$, non-estimable; ORR, objective response rate.

Best Percentage Change in Target Lesion From Baseline

Analyses were performed in patients who received 21 dose of $T-D X d$ ($n=267$). Analysis of ORR in IHC $3+$ was performed in patients with centrally confirmed HER2 status ($n=75$). ${ }^{\text {a }}$ Responses in extramammary Paget's disease, head and neck cancer, oropharyngeal neoplasm, and salivary gland cancer. BTC, biliary tract cancer, IHC, immunohistochemistry; ORR, objective response rate.

Duration of Objective Response

Percentage Change in Target Lesions Over Time

Overall Safety Summary

$\mathbf{n}(\%)$	All patients $(\mathbf{N}=\mathbf{2 6 7})$
Any drug-related TEAEs	$225(84.3)$
Drug-related TEAEs Grade ≥ 3	$103(38.6)$
Serious drug-related TEAEs	$32(12.0)$
Drug-related TEAEs associated with dose discontinuations	$22(8.2)$
Drug-related TEAEs associated with dose interruptions	$49(18.4)$
Drug-related TEAEs associated with dose reductions	$50(18.7)$
Drug-related TEAEs associated with deaths	$2(0.7)^{\mathrm{a}}$

Drug-Related TEAEs in $\geq 10 \%$ of Patients

 TEAE, treatment-emergent adverse event; T-DXd, trastuzumab deruxtecan.

Adverse Events of Special Interest

ILD/pneumonitis adjudicated as T-DXd-related

$\mathbf{n}(\%)$	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any grade
All patients $(\mathbf{N}=267)$	$6(2.2)$	$12(4.5)$	$1(0.4)$	0	$1(0.4)$	$20(7.5)$

Left ventricular dysfunction ${ }^{\text {a }}$

n (\%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any grade

Ejection fraction decreased

All patients $(\mathrm{N}=267)$	$1(0.4)$	$4(1.5)$	$1(0.4)$	0	0	$7(2.6)^{\mathrm{b}}$
Cardiac failure						
All patients $(\mathrm{N}=267)$	0	0	$1(0.4)$	0	0	$1(0.4)$

Conclusions

- T-DXd demonstrated clinically meaningful activity across a broad range of HER2-expressing solid tumors, including those that are hard to treat:
- Encouraging ORR: 37.1% in all patients and 61.3% in patients with IHC 3+
- Durable responses: median DOR 11.8 months in all patients and 22.1 months in patients with IHC 3+
- This trial is ongoing; OS and PFS will be analyzed with additional follow-up
- The safety profile of T-DXd was consistent with the known profile
- DESTINY-PanTumor02 shows T-DXd to be a potential new treatment option for patients with HER2-expressing solid tumors
identified by plasma cell-free DNA (cfDNA) testing: Results from a phase 2 basket trial (HERALD/EPOC1806)

Hiroya Taniguchir, Masataka Yagisawa ${ }^{2}$, Taroh Satoh ${ }^{3}$, Shigenori Kadowaki, Yu Sunakawa ${ }^{4}$, Tomohiro Nishina ${ }^{5}$, Yoshito Komatsu ${ }^{6}$, Taito Esaki?, Daisuke Sakaif, Ayako Doid, Takeshi Kajiwara ${ }^{5}$, Hiromi Ono ${ }^{9}$, Masatoshi Asano ${ }^{9}$, Nami Hirano ${ }^{9}$, Justin Iver Odegaard ${ }^{10}$, Satoshi Fujilit, Shogo Nomura ${ }^{12}$, Akihiro Sato ${ }^{9}$, Takayuki Yoshino ${ }^{13}$, Yoshiaki Nakamura ${ }^{13}$

METHODS

CONCLUSIONS
T-DXd achieved a high ORR and durable response with a manageable safety profile in patients with advanced solid tumors and HER2 amplification detected in cfDNA

TROPION-Lung02: Datopotamab Deruxtecan (Dato-DXd) Plus Pembrolizumab With or Without Platinum Chemotherapy in Advanced Non-Small Cell Lung Cancer

[^2] at Johns Hopkins, Baltimore, MD; ${ }^{4}$ Quantum Santa Fe, Santa Fe, NM; ${ }^{5}$ Daiichi Sankyo, Inc, Basking Ridge, NJ; ${ }^{6}$ Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; ${ }^{7}$ NEXT

 Unit, Universidad Complutense and CIBERONC, Madrid, Spain

Introduction

- Dato-DXd is an antibody-drug conjugate composed of a TROP2-directed monoclonal antibody covalently linked to a highly potent cytotoxic payload via a plasma-stable, tumor-selective, tetrapeptide-based cleavable linker ${ }^{1-5}$
- Dato-DXd 6-mg/kg monotherapy demonstrated encouraging antitumor activity, with an ORR of 28% and a median DOR of 10.5 months, in patients with heavily pretreated advanced/metastatic NSCLC ${ }^{6}$

 antigen 2.
 2016;107(7):1039-1046. 5. Shiose Y, et al. Biol Pharm Bull. 2007;30(12):2365-2370. 6. Garon EB, et al. IASLC WCLC 2021. Abstract MA03.02

Preclinical Rationale for TROPION-Lung02

- Preclinical data showed more potent antitumor activity of combinations of Dato-DXd and anti-PD-(L)1 antibodies than either agent alone, supporting their clinical investigation ${ }^{1}$
- The phase 1b/2 BEGONIA trial (NCT03742102) showed the promising clinical activity of 1L Dato-DXd + durvalumab in patients with advanced/metastatic TNBC (confirmed ORR, 74\%; confirmed CR rate, 8\%; patients remaining in response at data cutoff, $82 \%)^{2}$
hTROP2-MC38 tumor volume in C57BL/6 mice ${ }^{1}$

TROPION-Lung02: Phase 1b Study

- TROPION-Lung02 is the first study evaluating Dato-DXd + pembrolizumab \pm platinum CT^{a} in advanced NSCLC without actionable genomic alterations ${ }^{\mathrm{b}}$ (NCT04526691)
- The safety of the Dato-DXd + pembrolizumab doublet was established prior to evaluation of the platinumcontaining triplet
- The safety of Dato-DXd 4-mg/kg combinations was established prior to evaluation of 6-mg/kg combinations

Key eligibility criteria
- Advanced/metastatic NSCLC
- Dose escalation ${ }^{\text {c. }} \leq 2$ lines of prior
therapy
- Dose expansion
- ≤ 1 line of platinum-based CT
\quad (cohorts 1 and 2) $^{\text {d }}$
- Treatment naive (cohort 2;
enrollment after Jun 30, 2022)d
- Treatment naive (cohorts 3-6)

Data cutoff: April 7, 2023

AUC, area under the curve; CT, chemotherapy; Dato-DXd, datopotamab deruxtecan; DLT, dose-limiting toxicity; IV, intravenous; NSCLC, non-small cell lung cancer; pembro, pembrolizumab; Q3W, every 3 weeks
${ }^{a}$ Administered sequentially at the same visit. ${ }^{\text {b }}$ Patients with known actionable $E G F R, A L K, R O S 1, N T R K, B R A F, R E T$, or $M E T$ mutations or alterations in other actionable oncogenic driver kinases were not eligible for this study Testing for EGFR and ALK alterations was not required for patients with squamous histology who were smokers or ≥ 40 years of age. ${ }^{\mathrm{c}}$ The first 3 to 6 patients in each cohort were enrolled to confirm acceptable safety/DLT rate; the remaining patients are considered part of dose expansion (for which enrollment was ongoing at the time of data cutoff). ${ }^{\text {d Prior therapy requirements are for treatment in the advanced/metastatic setting. }}$

Patient Baseline Characteristics

Characteristic	Doublet $(n=64)$	$\begin{aligned} & \text { Triplet } \\ & (\mathrm{n}=72) \end{aligned}$
Age, median (range), years	65 (44-83)	64 (33-84)
Male, n (\%)	48 (75)	48 (67)
Histology, n (\%) Adenocarcinoma Squamous	$\begin{aligned} & 45(70) \\ & 16(25) \end{aligned}$	$\begin{aligned} & 49(68) \\ & 15(21) \end{aligned}$
History of brain metastases, n (\%)	11 (17)	14 (19)
$\begin{aligned} & \text { PD-L1 expression, } \mathbf{n}(\%)^{\mathbf{a}} \\ & \quad<1 \% \\ & 1 \%-49 \% \\ & \geq 50 \% \end{aligned}$	$\begin{aligned} & 23(36) \\ & 28(44) \\ & 13(20) \end{aligned}$	$\begin{aligned} & 29(40) \\ & 24(33) \\ & 18(25) \end{aligned}$
Prior lines of therapy, median (range) ${ }^{\text {b }}$	$0(0-4)^{\text {c }}$	$0(0-3)^{\text {c }}$
Previous systemic treatment, \mathbf{n} (\%) Immunotherapy Platinum chemotherapy	$\begin{aligned} & 12(19) \\ & 24(38) \end{aligned}$	$\begin{aligned} & 18(25) \\ & 17(24) \end{aligned}$
Dato-DXd combination line of therapy, $\mathrm{n}(\%)^{\text {d }}$ $1 \mathrm{~L}$ 2L+	$\begin{aligned} & 37(58) \\ & 27(42) \end{aligned}$	$\begin{aligned} & 54(75) \\ & 18(25) \end{aligned}$

- Of patients receiving doublet or triplet therapy, 58% and 75%, respectively, were treated in the 1 L setting
- Immunotherapy was previously given in 19% of patients receiving doublet therapy and 25% of patients receiving triplet therapy

Data cutoff: April 7, 2023
1L, first line; 2L+, second line and later; Dato-DXd, datopotamab deruxtecan; NSCLC, non-small cell lung cancer; PD-L1, programmed death ligand 1
 In the advanced/metastatic setting.

Patient Disposition

Disposition	Doublet $(n=64)$	$\begin{aligned} & \text { Triplet } \\ & (n=72) \end{aligned}$	
Study duration, median (range), months	14.8 (1-30.2)	12.9 (2.6-23.4)	
Treatment status Ongoing on study treatment, n (\%) Discontinued from study treatment, n (\%) Duration of treatment, median (range), months	$\begin{gathered} 23(36) \\ 41(64) \\ 4.2(0.7-18.5) \end{gathered}$	$\begin{gathered} 33(46) \\ 39(54) \\ 5.7(0.7-23.2) \end{gathered}$	- At the time of data cutoff, 36% of patients receiving doublet therapy and 46% of those receiving triplet
No. of cycles received, median (range) Dato-DXd Pembrolizumab Cisplatin Carboplatin	$\begin{gathered} 6(1-24) \\ 6(1-25) \\ \text { NA } \\ \text { NA } \end{gathered}$	$\begin{gathered} 7(1-29) \\ 7(1-29) \\ 3.5(1-4) \\ 4(1-5) \end{gathered}$	therapy were still receiving study treatment - Progressive disease was the primary reason for treatment
Primary reason for treatment discontinuation, n (\%) Adverse event Progressive disease Patient withdrawal Physician decision Death	$\begin{gathered} 11(17) \\ 22(34) \\ 5(8) \\ 0 \\ 3(5) \end{gathered}$	$\begin{gathered} 11(15) \\ 23(32) \\ 0 \\ 3(4) \\ 0 \end{gathered}$	

Data cutoff: April 7, 2023
Dato-DXd, datopotamab deruxtecan; NA, not applicable.

Antitumor Activity

All patients

Response ${ }^{\text {a }}$				
	Doublet $(\mathrm{n}=61)^{\mathrm{b}}$	$\begin{gathered} \text { Triplet } \\ (\mathrm{n}=71)^{\mathrm{b}} \end{gathered}$	Doublet $(n=34)^{b}$	$\begin{gathered} \text { Triplet } \\ (\mathrm{n}=53)^{\mathrm{b}} \end{gathered}$
$\begin{aligned} & \text { Confirmed + pending ORR, } \mathrm{n}(\%)^{\mathrm{c}, \mathrm{~d}} \\ & \quad[95 \% \mathrm{Cl}] \end{aligned}$	$\begin{aligned} & 23(38) \\ & {[26-51]} \end{aligned}$	$\begin{aligned} & 35(49) \\ & {[37-61]} \end{aligned}$	$\begin{aligned} & 17(50) \\ & {[32-68]} \end{aligned}$	$\begin{aligned} & 30(57) \\ & {[42-70]} \end{aligned}$
Confirmed + pending BOR, $\mathrm{n}(\%)^{\mathrm{d}, \mathrm{e}}$ Confirmed CR Pending $\mathrm{CR}^{\text {d }}$ Confirmed PR Pending PR^{d}	$\begin{gathered} 0 \\ 0 \\ 21(34) \\ 2(3) \end{gathered}$	$\begin{gathered} 1(1) \\ 0 \\ 34(48) \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 15(44) \\ 2(6) \end{gathered}$	$\begin{gathered} 1(2) \\ 0 \\ 29(55) \\ 0 \end{gathered}$
SD, $\mathrm{n}(\%)^{\text {f }}$	30 (49)	27 (38)	16 (47)	18 (34)
DCR, $\mathrm{n}(\%)^{\text {g }}$	51 (84)	62 (87)	31 (91)	48 (91)
Median DOR, months [95\% CI]	$\begin{gathered} \mathrm{NE} \\ {[8.8-\mathrm{NE}]} \end{gathered}$	$\begin{gathered} \mathrm{NE} \\ {[5.8-\mathrm{NE}]} \end{gathered}$	$\begin{gathered} \mathrm{NE} \\ {[5.5-\mathrm{NE}]} \end{gathered}$	$\begin{gathered} \mathrm{NE} \\ {[5.7-\mathrm{NE}]} \end{gathered}$

- In the 1 L setting, the ORR (confirmed and pending) ${ }^{\text {d }}$ was 50% in patients receiving doublet therapy and 57% in those receiving triplet therapy
- Among all patients, the DCR was 84% (doublet) and 87% (triplet); in the 1 L setting, the DCR was 91% in both therapy subgroups

Preliminary PFS in all patients, median (95\% CI), months: doublet, $8.3(6.8-11.8)$; triplet $7.8(5.6-11.1)^{\mathrm{h}}$

Data cutoff: April 7, 2023.

 survival; PR, partial response; SD, stable disease.

 pending responses). ${ }^{9}$ DCR defined as BOR of confirmed $C R+$ confirmed $P R+S D$. ${ }^{h}$ Preliminary $P F S$ is limited by immature duration of follow-up.

Best Overall Tumor Change From Baseline

Depth and Duration of Response

Doublet therapy, 1L subgroup

Triplet therapy, 1L subgroup

Data cutoff: April 7, 2023.
1L, first line; NE, not estimable; PD-L1, programmed death ligand 1.

Safety Summary

Event, n (\%)	Doublet $(n=64)$	$\begin{aligned} & \text { Triplet } \\ & (\mathrm{n}=72) \end{aligned}$
TEAEs ${ }^{\text {a }}$	62 (97)	72 (100)
Study treatment related ${ }^{\text {b }}$	58 (91)	72 (100)
Grade ≥ 3 TEAEs	34 (53)	55 (76)
Study treatment related ${ }^{\text {b }}$	20 (31)	42 (58)
Serious TEAEs	20 (31)	29 (40)
Study treatment related	6 (9)	16 (22)
TEAEs associated with:		
Death ${ }^{\text {f }}$	3 (5)	5 (7)
Dose reduction of any drug	14 (22)	14 (19)
Dose reduction of Dato-DXd	14 (22)	11 (15)
Discontinuation of any drug	18 (28)	27 (38)
Discontinuation of Dato-DXd9	15 (23)	20 (28)

- During the dose-finding phase, 2 patients receiving Dato-DXd + pembrolizumab + platinum CT had DLTs ${ }^{\text {c,d,e }}$
- TEAEs (treatment-emergent adverse events) associated with discontinuation of Dato-DXd occurred in 23% of patients receiving the doublet regimen and in 28% of patients receiving the triplet regimen

Data cutoff: April 7, 2023

 TMG, toxicity management guideline

TEAEs Occurring in $\geq \mathbf{2 0} \%$ of Patients

Doublet therapy Triplet therapy
Stomatitis Nausea Anemia Fatigue Decreased appetite Constipation Vomiting Cough
Platelet count decreased

- The most frequent TEAEs of any grade were stomatitis, nausea, anemia, and fatigue
- In general, hematologic TEAEs, particularly those of grade ≥ 3, were more frequently observed with triplet therapy than with doublet therapy

Data cutoff: April 7, 2023
TEAE, treatment-emergent adverse event

Adverse Events of Special Interest

AESI, $\mathbf{n}(\%)^{\text {a,b }}$	Doublet$(n=64)$		$\begin{aligned} & \text { Triplet } \\ & \text { (} \mathrm{n}=72 \text {) } \end{aligned}$	
	All grades	Grade ≥ 3	All grades	Grade ≥ 3
Oral mucositis/stomatitis	37 (58)	5 (8)	31 (43)	4 (6)
ILD/pneumonitis adjudicated as drug related ${ }^{\text {c }}$	11 (17)	2 (3)	16 (22)	2 (3)
Ocular surface toxicity ${ }^{\text {d }}$	10 (16)	1 (2)	17 (24)	2 (3)
IRR ${ }^{\text {e }}$	15 (23)	0	10 (14)	0

- Oral mucositis/stomatitis was the most commonAESI and was predominantly grade $1 / 2$
- No grade 5 AESIs have occurred
- There were no grade 4 or 5 adjudicated ILD/pneumonitis events ${ }^{f}$

Data cutoff: April 7, 2023.
AESI, adverse event of special interest; ILD, interstitial lung disease; IRR, infusion-related reaction.

 was ultimately readjudicated to be grade 2.

Conclusions and Ongoing Studies With Pembrolizumab

- In this study, Dato-DXd + pembrolizumab \pm platinum chemotherapy demonstrated encouraging antitumor activity in patients with NSCLC in the 1 L and $2 \mathrm{~L}+$ settings
- No new safety signals were observed
- The most frequent TEAEs of any grade were stomatitis, nausea, anemia, and fatigue
- Dato-DXd + pembrolizumab \pm chemotherapy is being compared with SOC therapies in the 1 L setting in the pivotal phase 3 TROPIONLung07 and TROPION-Lung08 studies

A Phase II Study of HER3-DXd in Patients with Metastatic Breast Cancer

Erika P. Hamilton, MD ${ }^{1,2}$; Ololade Dosunmu, MD, MPH ${ }^{1}$; Mythili Shastry, PhD¹; Lindsey Finney, MS¹; Dalila Sellami, MD³; David Sternberg, MD, PhD³; Vance Wright-Browne, MD4; Deborah Toppmeyer, MD ${ }^{5}$; William R. Gwin III, MD ${ }^{6}$; J. Thaddeus Beck, MD, FACP; Jennifer Cultrera, MD*; Nusayba A. Bagegni, MD ${ }^{9}$; Katia Khoury, MD ${ }^{10}$; Arielle Heeke, MD ${ }^{11}$; Yuan Yuan, MD, PhD ${ }^{12}$
${ }^{1}$ Sarah Cannon Research Institute, Nashville, TN; ${ }^{2}$ Tennessee Oncology, PLLC, Nashville, TN; ${ }^{3}$ Daiichi Sankyo, Inc., Basking Ridge, NJ; ${ }^{4}$ Florida Cancer Specialists South, Fort Myers, FL; ${ }^{5}$ Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; ${ }^{6}$ University of Washington, Seattle, WA; ${ }^{7}$ Highlands Oncology, Springdale, AR; ${ }^{8}$ Florida Cancer Specialists North, St. Petersburg, FL; ${ }^{9}$ Washington University, St. Louis, MO; ${ }^{10} \mathrm{O}$ 'Neal Comprehensive Cancer Center at the University of Alabama, Birmingham, AL; ${ }^{11}$ Levine Cancer Institute, Charlotte, NC; ${ }^{12} \mathrm{City}$ of Hope Comprehensive Cancer Center, Duarte, CA

Background

Overexpression of HER3, a member of the HER receptor tyrosine kinase (RTK) family, is associated with disease progression and increased invasion of cancer cells into the vessels in many solid tumors. ${ }^{1,2}$
HER3 forms heterodimers with other RTKs (most notably HER2) to promote tumorigenesis and metastasis via downstream signaling. 3,4,5
Higher HER3 expression is found in metastatic breast cancer (MBC) samples compared with primary breast tumor samples. ${ }^{2}$
HER3-DXd (patritumab deruxtecan) is an antibody-drug conjugate (ADC) comprising a fully human anti-HER3 IgG1 monoclonal antibody (patritumab) covalently linked to a topoisomerase I inhibitor payload, an exatecan derivative (DXd), via a tetrapeptide-based cleavable linker.

Background

- A previous Phase I/II study (NCT02980341) that evaluated patritumab deruxtecan in patients with heavily pretreated MBC demonstrated decreased tumor size irrespective of BC subtype and HER3 expression.

a Membrane positivity for all patients with TNBC or HER2+ BC was $\geq 75 \%$.
HER3 expression: high, $\geq 75 \%$; low, $25-74 \%$. Efficacy data includes patients treated at all dose levels.

Study Design

- This Phase II study (NCT04699630) examines the efficacy and safety of patritumab deruxtecan administered in patients with locally advanced or metastatic BC.
- Here, we present data for Part A.

HER3 expression was not an enrollment criterion for Part A; HER3 expression was retrospectively assessed using immunohistochemistry.

Study Objectives

Primary Objective

Evaluate objective response rate (ORR) and 6-month progression-free survival ($\mathrm{PFS}_{6 \text { month }}$) of singleagent patritumab deruxtecan in patients with HER2-negative MBC

Secondary Objectives

Assess safety and tolerability of patritumab deruxtecan in patients with HER2-negative and HER2-positive MBC
Estimate the duration of response (DoR), PFS, and clinical benefit rate (CBR) in patients with HER2-negative and HER2-positive MBC

Key Enrollment Criteria (Part A)

Women and men ≥ 18 years of age and ECOG status of 0 or 1
Locally advanced or metastatic $B C$ with ≥ 1 measurable lesion
HER2-negative per ASCO-CAP guidelines (by immunohistochemistry) (includes zero and low expression)
Hormone receptor positive (HR+) or negative (HR-)

- Patients (Pts) with HR+ BC
- Unlimited lines of endocrine therapy; prior CDK4/6 inhibitor required
- ≤ 2 prior lines of chemotherapy in the metastatic setting
- Pts with HR- (triple negative) BC
- 1-3 prior lines of chemotherapy in the metastatic setting
- Willingness to undergo pre-treatment and on-treatment biopsies
- No prior treatment with any HER3-targeting agent or any ADC that contains an exatecan derivative
- No prior history of interstitial lung disease (including pulmonary fibrosis or radiation pneumonitis)

Patient Disposition

(N=60)	
Patients Enrolled*	61
Patients Treated (Safety Set)	60
Treatment Status	
Receiving study treatment	$21(35.0)$
Discontinued from study treatment	$39(65.0)$
Primary reason for discontinuation from study treatment	
Adverse event**	$8(13.1)$
Clinical progression/objective disease progression	$25(41.7)$
Death	$2(3.3)$
Physician/patient decision	$4(6.7)$
Duration on Study (Months)	
Median (range)	$5.9(0.2,14.5)$

*1 pt was enrolled but did not receive treatment. Pt was discontinued due to "Withdrawal by Pt." **Pneumonitis, 3 pts; Interstitial Lung Disease (ILD), 1 pt; Muscular Weakness, 1 pt; Fatigue, 1 pt; Nausea, 1 pt; AST/ALT Increased, 1 pt. ILD adjudication of ILD/pneumonitis events is ongoing as of data cutoff. †Pneumocystis pneumonia, 1 pt; Dyspnea, 1 pt. Neither death was treatment related.

Demographics and Prior Systemic Therapies

	$\begin{gathered} (\mathrm{N}=60) \\ \mathrm{n}(\%) \end{gathered}$
Sex/Age (Years)	
Male	1 (1.7)
Female	59 (98.3)
>18 to <65	43 (71.7)
≥ 65 to < 75	10 (16.7)
≥ 75	6 (10.0)
Race	
Asian	6 (10.0)
Black or African American	6 (10.0)
White	46 (76.7)
Other/not reported	2 (3.4)
ECOG	
0	31 (51.7)
1	29 (48.3)
Stage IV at Diagnosis	13 (21.7)
BRCA1	
Positive (mutated)	2 (3.3)
BRCA2	
Positive (mutated)	1 (1.7)

	$\begin{gathered} (N=60) \\ n(\%) \\ \hline \end{gathered}$
Number of Prior Systemic Regimens in Metastatic Setting	
1-2 prior regimens	24 (40.0)
3 or more prior regimens	36 (60.0)
Median (range)	$3(1,9)$
Type of Prior Regimens in the Metastatic Setting*	
Chemotherapy	54 (90.0)
PARP inhibitors	3 (5.0)
Immunotherapy	12 (20.0)
Sacituzumab govitecan	5 (8.3)

*100\% of the 29 patients with HR+BC received prior therapy with CDK4/6 inhibitor.

Tumor Characteristics

- Of the 60 patients who received treatment, 48 patients (80%) had baseline results available for both estrogen receptor (ER) and progesterone receptor (PR), and 47 patients (78.3%) had baseline results available for HER3.

$(\mathbf{N}=\mathbf{4 8})$ $\mathbf{n}(\%)$	
Baseline ER	$24(50.0)$
High (>10\% expression)	$1(2.1)$
Low (1-10\% expression)	$23(47.9)$
Negative	$22(45.8)$
Baseline PR	$3(6.3)$
High (>10\% expression)	$23(47.9)$
Low (1-10\% expression)	$19(39.6)$
Negative	

(N=47) $\mathrm{n}(\%)$	
Baseline HER3 Expression*	
$\geq 75 \%$	$30(63.8)$
25% to 74%	$13(27.7)$
$<25 \%$	$4(8.5)$

*Membrane HER3 expression measured at 10X objective.

Treatment Received and Dose Modifications

(N=60)	
Treatment Duration (Months)	$5.2(0.7,15.2)$
Median (range)	$26(43.3)$
Patients with Treatment Duration $\geq \mathbf{6}$ Months on Patritumab Deruxtecan, \mathbf{n} (\%)	$9(15.0)$
Dose Reduced, \mathbf{n} (\%)	$9(15.0)$
Adverse event*	$8(13.3)$
Number of Dose Reductions, \mathbf{n} (\%)	$1(1.7)$
1 reduction	$20(33.3)$
2 reductions	$14(23.3)$
Dose Interrupted, \mathbf{n} (\%)	$7(11.7)$
Adverse event	
Other	

*Gastrointestinal Disorders, 4 pts; Thrombocytopenia, 2 pts; Fatigue, 1 pt; Dyspnea, 1 pt; Pruritus, 1 pt

Duration on Study Treatment by HER3 Membrane Expression

Response - Investigator Assessment

	Membrane HER3 $\geq 75 \%$ $(N=30)$	$\begin{aligned} & \text { Membrane } \\ & \text { HER3 25\%-74\% } \\ & (\mathrm{N}=13) \end{aligned}$	Membrane HER3 < 25\% ($\mathrm{N}=4$)	Unknown Membrane HER3 Expression* ($\mathrm{N}=13$)	Total ($\mathrm{N}=60$) N (\%)
Best Overall Response, \mathbf{n} (\%)					
Complete response (CR)	0	0	0	0	0
Partial response (PR)	10 (33.3)	6 (46.2)	2 (50.0)	3 (23.1)	21 (35.0)
Stable disease (SD)	13 (43.3)	4 (30.8)	1 (25.0)	8 (61.5)	26 (43.3)
Progressive disease (PD)	5 (16.7)	1 (7.7)	1 (25.0)	0	7 (11.7)
Missing/no post baseline	2 (6.7)	2 (15.4)	0	2 (15.4)	6 (10.0)
ORR, n (\%)	10 (33.3)	6 (46.2)	2 (50.0)	3 (23.1)	21 (35.0)
95\% Cl	(17.3, 52.8)	(19.2, 74.9)	(6.8, 93.2)	(5.0, 53.8)	(23.1, 48.4)
CBR, n (\%)**	12 (40.0)	7 (53.8)	2 (50.0)	5 (38.5)	26 (43.3)
95\% Cl	$(22.7,59.4)$	(25.1, 80.8)	(6.8, 93.2)	(13.9, 68.4)	(30.6, 56.8)
DoR ≥ 6 months, \mathbf{n} (\%) ${ }^{+}$	4 (40.0)	2 (33.3)	2 (100)	2 (66.7)	10 (47.6)

*HER3 results available for 47 pts. Remaining 13 pts had tissue not available/testing result unevaluable.
${ }^{* *} \mathrm{CBR}=\mathrm{CR}, \mathrm{PR}$, or $\mathrm{SD} \geq 180$ days
${ }^{\dagger}$ Percentage calculation uses the number of pts who responded as the denominator.
Among patients with heavily pretreated BC, all-comer ORR was 35%, overall CBR was 43%, and DoR was at least 6 months in nearly half of all patients who responded.

Response by HER3 Expression Level and Clinical Subtype

HER3 Membrane Expression $\geq \mathbf{7 5 \%}$

	$E R+$ $(N=16)$	TNBC $(N=11)$
ORR, \mathbf{n} (\%)	$\mathbf{6}(\mathbf{3 7 . 5})$	$\mathbf{2 (1 8 . 2)}$
$95 \% \mathrm{Cl}$	$(15.2,64.6)$	$(2.3,51.8)$
CBR, \mathbf{n} (\%)	$\mathbf{8}(\mathbf{5 0 . 0})$	$\mathbf{2 (1 8 . 2)}$
$95 \% \mathrm{Cl}$	$(24.7,75.3)$	$(2.3,51.8)$
DoR $\geq \mathbf{6}$ months, \mathbf{n} (\%)	$\mathbf{3 (5 0 . 0})$	$\mathbf{1 (5 0 . 0)}$

There are 30 total pts with HER3 $\geq 75 \%$. 2 pts were ER-/PR+, and 1 pt did not
have ER/PR testing results; therefore, they are not included in the table.

ORR and CBR were not higher for patients with HER3 expression $\geq 75 \%$ compared with patients with HER3 expression 25\% to 74\%.

HER3 Membrane Expression 25\% to 74\%

	$E R+$ $(N=5)$	TNBC $(N=5)$
ORR, $\mathbf{n}(\%)$	$\mathbf{3 (6 0 . 0)}$	$\mathbf{1 (2 0 . 0)}$
$95 \% \mathrm{Cl}$	$(14.7,94.7)$	$(0.5,71.6)$
CBR, $\mathbf{n}(\%)$	$\mathbf{3}(\mathbf{6 0 . 0})$	$\mathbf{2 (4 0 . 0)}$
$95 \% \mathrm{Cl}$	$(14.7,94.7)$	$(5.3,85.3)$
DoR $\geq \mathbf{6}$ months, $\mathbf{n}(\%)$	$\mathbf{1 (3 3 . 3)}$	$\mathbf{0}$

There are 13 total pts with HER3 25% to 74%. 2 pts were ER-/PR+, and 1 pt did not have ER/PR testing results; therefore, they are not included in the table.

Response Summary Irrespective of HER3 Membrane Expression

	HR+ $(\mathbf{N}=29)$	TNBC $(\mathbf{N}=19)$
ORR, \mathbf{n} (\%)	$\mathbf{1 2 (4 1 . 4)}$	$\mathbf{4 (2 1 . 1)}$
$95 \% \mathrm{Cl}$	$(23.5,61.1)$	$(6.1,45.6)$

Majority of Patients Had Tumor Shrinkage

Best Percent Change in Sum of Diameters from
Baseline in Target Lesions

Percent Change from Baseline in Sum of Diameters of Target Lesions HR+ vs TNBC

Safety

Treatment-Related Adverse Events Occurring in $\geq 10 \%$ of Patients by Highest Reported Grade*

	Any grade $\mathbf{N}=60)$ $\mathrm{n}(\%)$	Grade 3/4 $(\mathbf{N}=60)$ $\mathrm{n}(\%)$
Any Adverse Event (AE)	$56(93.3)$	$19(31.7)$
Nausea	$30(50.0)$	$2(3.3)$
Fatigue	$27(45.0)$	$4(6.7)$
Diarrhea	$22(36.7)$	$3(5.0)$
Vomiting	$19(31.7)$	$1(1.7)$
Anemia	$18(30.0)$	0
Alopecia	$17(28.3)$	N / A
Hypokalemia	$9(15.0)$	$1(1.7)$
Decreased Appetite	$8(13.3)$	0
Neutrophil Count Decreased**	$7(11.7)$	$3(5.0)$
White Blood Cell Count Decreased**	$7(11.7)$	$1(1.7)$

Treatment-Emergent Serious Adverse Events

Treatment-related SAEs	$(\mathbf{N}=60), \mathbf{n}(\%)$
Interstitial Lung Disease	
Nausea/Vomiting	$1(1.7)$
Pneumonitis	$1(1.7)$
Thrombocytopenia	$1(1.7)$
Unrelated SAEs	$1(1.7)$
Dyspnea	$1(1.7)$
Pneumocystis jiroveciï pneumonia	$1(1.7)$
Pneumothorax	$1(1.7)$

†Interstitial Lung Disease (ILD) adjudication of ILD/pneumonitis events ongoing as of data cutoff.
*No Grade 5 treatment-related adverse events had occurred prior to data cutoff.
${ }^{* *}$ More than 1 adverse event could be reported per pt.

- The most common adverse events were nausea, fatigue, and diarrhea.
- The majority of adverse events were Grades 1 and 2. No single Grade 3/4 adverse event occurred in more than 7\% of patients.

Conclusions

Clinical activity of patritumab deruxtecan was observed across a broad range of HER3 membrane expression levels in patients with heavily pretreated ER+ and TN metastatic breast cancers.

- This is consistent with emerging data:
- SOLTI-TOT-HER3 reported an ORR of 30\% irrespective of HR status in patients with early-stage HER2-negative BC
(Oliviera M et al. ESMO BC 2023)
- ICARUS-Breast01 reported an ORR of 29% in patients with HR+ MBC irrespective of level of HER3 expression (preliminary data) (Pistilli B et al. ESMO BC 2023)

The safety profile of patritumab deruxtecan was manageable, with very low rates of Grade 3/4 adverse events.

Data from this analysis supports the potential entry of patritumab deruxtecan into the therapeutic paradigm across MBC subtypes.

Part B (currently expanding) and Part Z (HER2+ MBC after progression on T-DXd) are both enrolling patients irrespective of HER3 expression.

ICARUS-BREAST01

A phase 2 Study of Patritumab Deruxtecan (HER3-DXd) in patients with advanced breast cancer:

AN EXPLORATORY BIOMARKER ANALYSIS

B. Pistilli, N. Ibrahimi, M. Lacroix-Triki, V. D'Hondt, C. Vicier, J.S. Frenel, F. Dalenc, T. Bachelot, M.A. Benderra, D. Loirat, A. Ducoulombier, D. Mayeur, G. Nachabeh, K. Serhal, N. Corcos, D. Sellami, S. Michiels, F. André, F. Mosele, G. Montagnac

Correspondence: barbara.pistilli@gustaveroussy.fr

DECLARATION OF INTERESTS

Barbara Pistilli, MD

Consulting fees: Astra Zeneca (institutional), Seagen (institutional), Gilead (institutional), Novartis (institutional), Lilly (institutional), MSD (institutional), Pierre Fabre (personal), Daiichi-Sankyo (institutional/personal)
Research funding (to my institution): Astra Zeneca, Daiichi-Sankyo, Gilead, Seagen, MSD Travel support: Astra Zeneca; Pierre Fabre; MSD; Daiichi-Sankyo

BACKGROUND-I

Human epidermal growth factor receptor 3 (HER3) is a key member of the ErbB family that lacks intrinsic protein tyrosine kinase activity and generally forms dimers with other HER family receptors (eg.HER2-HER3) ${ }^{1,2}$ HER3 overexpression is associated with worse prognosis across different solid tumors, including breast cancer ${ }^{3}$
In breast cancer, HER3 upregulation is a key player in resistance to PI3K/AKT/mTOR inhibitors ${ }^{4-6}$, HER2targeting therapies ${ }^{7}$ and endocrine therapy ${ }^{8,9}$
Patritumab deruxtecan (U3-1402; HER3-DXd) is a novel ADC, composed of a fully human anti-HER3 IgG1 monoclonal antibody coupled via a cleavable linker to a topoisomerase I inhibitor payload, a derivative of exatecan (DX-8951f), with a drug to antibody ratio $\sim 8: 1$10-13
 Morrison MM etal, Oncogene (2016) 35, 1143-1152; 10. Hashimoto Y et al. Cin Cancer Res. 2019:25(23):7151-7161; 11. NakadaT, etal. Chem Pharm Bull (Tokyo) 2019;67(3): 173-185;12. OitaniY etal. Clin Cancer Res 2016;22(20):5097-5108; 13. KoganemaruS, etal. Mol Cancer Ther. 2019,18(11):2043-2050

In the phase I/II U3-1402-J101 study, HER3-DXd showed promising activity in patients with heavily pretreated HER3-expressing advanced breast cancer (HR+/HER2-, TNBC, and HER2+); efficacy was observed across a broad range of HER3-positive expression levels ${ }^{1}$

Biomarkers of response and resistance to HER3-DXd are unknown

ICARUS-BREAST01 (NCT04965766) is a phase II study aiming to determine predictors of response and resistance to HER3-DXd in patients with HR+/HER2- advanced breast cancer, who progressed on prior CDK4/6inhibitors, endocrine therapy $+/$ - any target therapy and 1 line of chemotherapy; study enrollment on HER3 IHC expression level ($\geq 75 \%$ of membrane positivity at $10 x$) was removed by amendment on Apr 21st, 2022

ICARUS-PROGRAM

Different clinical, basic/translational research teams to decipher mechanisms of action and the multiple parallel mechanisms of resistance to ADCs

WP1: Clinical trials

100 patients with NSCLC
DATO-DXd 6.0 mg/kg every 3 weeks until PD or unacceptable toxicity

WP2: Tumor alterations associated with response/resistance

WP3: ADC Trafficking

ICARUS-BREAST01 STUDY DESIGN

Prospective, multicenter, single-arm study with multiple biomarker analyses

```
KEY ELIGIBILITY CRITERIA*:
-unresectable locally advanced/metastatic BC
-HR+/HER2-neg/ HER2-low
-progression on CDK4/6inh + ET
-progression on 1 prior chemotherapy for ABC
-prior PI3K/AKT/mTORinh allowed
-no prior T-DXd
```


Mandatory:

-tumor biopsy (1 frozen +3 FFPE) -blood (30 ml)

Primary Endpoint:

-Investigator-assessed ORR Secondary Endpoints:
-DOR, PFS, CBR, OS
-Safety and tolerability

Exploratory Endpoints:

Predictors of
response/resistance

[^3]
EXPLORATORY BIOMARKER ANALYSIS

QUESTION: Can we identify potential markers of early treatment response (3-mos RR)* ?

- Total and HER3+ CTCs count at baseline and after $1^{\text {st }}$ HER3-DXd dose
- Gene alterations/expression at baseline/on-treatment

CTCs, HER3+CTCs (planned in 35 patients)

CTCs, HER3+CTCs (planned in 35 patients)

WES/RNAseq
IHC/AI-digital Spectral Hyperion
pathology
cytometry

Patients, $\mathrm{N}=56$			
Median age, years [range]	56 [28;82]	Prior (neo)adjuvant chemotherapy, n (\%) *	35 (64.8)
Sex, n (\%) Female	56 (100.0)	Median number of systemic therapies for $A B C$, n [range]**	2 [1;4]
HR status, n (\%) ER-neg; PR-neg	1 (1.8); 12 (21.4)	Prior treatment with CDK4/6inh, n (\%) ***	56 (100.0)
HER2 expression, $n(\%)^{8}$ IHC 0	35 (62.5)	Median duration of therapy with CDK4/6inh, months [range]	12.2 [1.9; 43.5]
IHC 2+, ISH-	$\begin{aligned} & 8(14.3) \\ & 5(8.9) \end{aligned}$	Prior PI3K/AKT/mTOR inh for ABC, n (\%) Everolimus	18 (32.1)
IHC 2+, ISH+ Unknown	$\begin{aligned} & 1(1.8) 8 \\ & 7(12.5) \end{aligned}$	Everoimus	56 (100.0)
HER3 expression, n (\%) ${ }^{\text {§S }}$ $\geq 75 \%$ membrane positivity at 10 x Unknown	$\begin{aligned} & 29(51.8) \\ & 27(48.2) \end{aligned}$	Capecitabine Paclitaxel Anthracyclines	$\begin{gathered} 26(52.0) \\ 13(26.0) \\ 5(8.9) \end{gathered}$

Data cut-off: Feb 15 ${ }^{\text {th }}, 2023$

[^4]
data cut-off: Feb 15 ${ }^{\text {th }}, 2023$
all patients received ≥ 1 cycle

Overall safety profile, n (\%)*

Any grade TEAE	$56(100.0)$
Grade ≥ 3	$27(48.2)$
- Leading to HER3-DXd discontinuation	$7(12.5)^{*}$
- Leading to HER3-DXd interruption	$9(16.0)$
- Leading to HER3-DXd dose reduction	$13(23.2)$
- Leading to death	$0(0)$
Adjudicated treatment related ILD	$\mathbf{1 (1 . 8) ^ { * * }}$

TEAEs $\mathbf{\geq 2 5 \%}$ of all patients, $\mathbf{n}(\%)$	All grades	Grade $\geq \mathbf{3}$
Fatigue	$50(89.3)$	$8(14.3)$
Nausea	$42(75.0)$	$2(3.6)$
Diarrhea	$26(46.4)$	$2(3.6)$
Alopecia	$25(44.6)$	NA
Constipation	$15(26.8)$	$3(5.3)$

Fatigue and gastrointestinal toxicity were the most common adverse events
All grade and grade ≥ 3 neutropenia occurred in 8 (14.0\%) and 6 (10.0\%) patients, respectively All grade and grade ≥ 3 thrombocytopenia occurred in 4 (8.0%) and 2 (4.0%) patients, respectively
*grade ≥ 3 TEAEs associated with treatment discontinuation were: worsening clinical conditions ($n=2$); vomiting ($n=2$); grade 3 thrombocytopenia ($n=1$); decompensation of chronic open-angle glaucoma ($n=1$); liver fibrosis ($n=1$)

$$
\begin{array}{ll}
\text { data cut-off: Feb } 15^{\text {th }}, 2023 \text {; all patients received } \geq 1 \text { cycle } & \text { *safety data up to } \operatorname{Nov} 4^{\text {th }}, 2022 \\
\text { TEAEs: treatmentemergent adverse events } & \text { **grade } 1 \text { interstitial lung disease }
\end{array}
$$

EXPLORATORY BIOMARKERS OF EARLY TREATMENT RESPONSE

Tumor response by 3 months from treatment initiation, n (\%)

Partial response	$16(28.6)^{*}$
Stable Disease	$30(53.6)$
Progressive Disease	$10(17.8)$

BASELINE

CTCs, HER3+CTCs

(planned in 35 patients)
WES/RNAseq
ON-TREATMENT
(C1D3/C1D19/C2D3)
CTCs, HER3+CTCs
(planned in 35 patients)
RNAseq
data cut-off: Feb 15^{h}, 2023; no patients had complete response
Only patients enrolled before Sep 15^{\dagger}, 2022 were included in the analyses; * 9 patients included before the study amendment

CTC COUNT AFTER FIRST HER3-DXD CYCLE

CTC counts by CellSearch

(31 patients, 69 blood samples)

HER3+ (cytokeratins+/-) CTCs by FACS*
(31 patients, 74 blood samples)

The median number of CTCs decreased after one to two cycles of HER3-DXd, mainly HER3+CTCs

[^5]
CTC COUNT AFTER FIRST HER3-DXD CYCLE

HER3- (cytokeratins+/-) CTCs by FACS*

(31 patients, 74 blood samples)
FACS

HER3+ CTCs AT BASELINE

OR 1.07 [95\%CI 0.92-1.26] ($p=0.335$)

HER3+ CTCs DECREASE FROM BASELINE TO C2D1

Patients with higher HER3+CTCs count at baseline or greater HER3+ CTCs decrease after the $1^{\text {st }}$ HER3-DXd cycle were more likely to have a early treatment response, although the association was not statistically significant
**CTC count as continuous variable
Univariable logistic models were performed to evaluate the relation between the response status and the CTC count. PR: partial response; SD:stable disease; PD: progressive disease

TUMOR GENOMIC ALTERATIONS AND TREATMENT RESPONSE

Whole-exome sequencing from frozen samples of 18 patients -> 17 baseline samples -> 5 samples at progression, $4 / 5$ matched with baseline

HER3-DXd seems to be active regardless of most frequent breast cancer genomic alterations

The type of the somatic alterations are coded according to the legend
Somatic mutations were filtered to exclude

1. non-exonic variants
2. variants from positions with shallow coverage (<20 tumor reads or < 10 normal reads)
variants with a VAF $<5 \%$
variants seen in wild-type populations at MAF $>0.04 \%$ (gnomAD)
synonymous variants

Somatic copy-number alterations (CNAs) were filtered to include only

1. focal copy-number segments (<10Mb in size)
2. Homozygous deletions (Hom. Del), losses-of-heterozygosity (LOH), high- ($6+$ copies), medium(4,5 copies), and low-level (3 copies) amplifications

TRANSCRIPTOMIC RESPONSE TO HER3-DXD IN EARLY RESPONDERS

RNAseq from frozen samples of 24 patients -> 24 baseline samples and ->14 matched on-treatment samples (C1D3/C1D19/C2D1)

RESPONDERS (n=7)

NON-RESPONDERS (n=17)
Volcano plot

Differentially expressed genes in early responders and non-responders
RNAseq: RNA sequencing

[^6]
KEY FINDINGS AND PERSPECTIVES

- HER3-DXd showed a manageable safety profile and early signs of clinical activity in patients who progressed on CDK4/6inh and further lines of endocrine therapy $+/$ - target therapies; these data are consistent with prior results of HER3-DXd in advanced breast cancer
- Total and HER3+ CTCs count decreased after the first cycle of HER3-DXd; although not statistically significant, patients with higher HER3+ CTCs count at baseline and patients with greater HER3+CTCs decrease were more likely to have an early treatment response (3-mos RR)
- Further analysis will be performed to evaluate the association between HER3+CTCs count and dynamics and main treatment outcomes (ORR, PFS), to determine whether HER3+CTCs can help to better select patients who can benefit of HER3-DXd
- RNAseq showed a higher modulation of gene expression in early responders as compared to nonresponders: is primary resistance more related to reduced ADC internalization/binding?
- ICARUS BREAST01 study is still ongoing and further efficacy and biomarker analysis will be presented

PATRITUMAB DERUXTECAN (HER3-DXD) IN HR+/HER2- AND TNBC: RESULTS OF PART B OF SOLTI TOT-HER3 WINDOW OF OPPORTUNITY TRIAL

Mafalda Oliveira, T. Pascual, P. Tolosa, M. Margelí, J.M. Cejalvo, J. Cruz, F.J. Salvador Bofill, M. A. Arumi de Dios, M. Vidal, S. Pernas, S. Esker, P.-D. Fan, A. Santhanagopal, O. Martínez-Sáez, F. Brasó-Maristany, G. Villacampa, R. Sanchez-Bayona, J. M. Ferrero-Cafiero, C. Falato and A. Prat

Mafalda Oliveira MD, PhD

Grant/Research Support (to the Institution): AstraZeneca, Ayala Pharmaceuticals, Boehringer-Ingelheim, Genentech, Gilead, GSK, Novartis, Roche, Seagen, Zenith Epigenetics
Consultant:AstraZeneca, Daiichi-Sankyo / AstraZeneca, Gilead, iTEOS, MSD, Pierre-Fabre, Relay
Therapeutics, Roche, Seagen
Honoraria: AstraZeneca, Eisai, Gilead, MSD, Novartis, Pfizer, Roche, Seagen
Travel Grants from AstraZeneca, Eisai, Gilead, Pierre-Fabre

Non-financial disclosure: member of the SOLTI Executive Board and Scientific Committee

- Patritumab deruxtecan (HER3-DXd; U3-1402) is a novel HER3-directed ADC composed of a human anti-HER3 mAb covalently linked to a topoisomerase I inhibitor payload via a stable, tumor selected, tetrapeptide-based, cleavable linker ${ }^{1-4}$
- HER3-DXd has demonstrated antitumor activity and an acceptable safety profile in heavily pretreated patients with metastatic breast cancer with varying levels of HER3 protein expression ${ }^{5,6}$
- The SOLTI TOT-HER3 study (NCT04610528) previously reported the biologic and clinical activity of a single dose of HER3-DXd in Part A of the trial ${ }^{7}$

HER3; human epidermal growth factor receptor 3; mAb, monoclonal antibody.

1. Hashimoto Y, et al. Clin Cancer Res. 2019;25(23):7151-7161; 2. Nakada T, et al. Chem Pharm Bull (Tokyo). 2019;67(3):173-185; 3. Ogitani Y, et al. Clin Cancer Res. 2016;22(20):5097-5108;4. Koganemaru S, et al. Mol Cancer Ther. 2019;18(11)-2043-2050. 5. Masuda N, et al. SABCS 2018. Abstract PD1-03; 6. Krop et al. SABCS 2020. Poster PD1-09; 7. Prat A, et al. ESMO Breast 2022. Proffered paper LBA3 and Oliveira M. et al, Ann Oncology, in press.

TOT-HER3 STUDY DESIGN

- Prospective, multicenter, window of opportunity trial

Key eligibility criteria

- Pre-and post-menopausal women, or men
- Primary operable breast cancer $\geq 1 \mathrm{~cm}$ by US or MRI
- HR-positivea/HER2negative OR TNBC by local assessment
- Ki67 $\geq 10 \%$ by local assessment
- No previous anticancer treatment for the current diagnosis of breast cancer
- Available pre-treatment FFPE core-needle biopsy

PRIMARY ENDPOINT: CELTIL SCORE

- CelTIL score correlates with pCR across breast cancer subtypes ${ }^{1-4}$
- Retrospective Analysis from PAMELA trial

Increased TILs at Day 15
No TILs increase at Day 15
Decreased TILs at Day 15

pCR

CelTIL score ${ }^{1}=$

 $-0.8 \times$ tumor cellularity (\%) + $1.3 \times$ TILs (\%)TILs, tumor infiltrating lymphocytes; PCR, pathological complete response.

1. Nuciforo P. et al. Ann Oncol. 2018;29(1):170-177;2. Chic N, et al. JNatl Cancer Inst 2022;114(3):467-470; 3 . González-Farré B, et al. Ann Oncol. 2020;31(suppl 2). Abstract 15P; 4. Manso Let al. Ann Oncol. 2020;31(suppl2). Abstract 41P.

PART A: CELTIL INCREASE AFTER 1 DOSE OF HER3-DXD

Overall CeITIL Change from Baseline

CeITIL Change by Clinical Response

ORR by physical exam at C1D21 was 45%
${ }^{\text {a }}$ Complete responses ($\mathrm{N}=14$); partial responses ($\mathrm{N}=14$); ${ }^{\mathrm{b}}$ Non-responders include patients with stable disease (no progressive disease was observed in the trial)

STUDY OBJECTIVES - PART B

- Variation in CeITIL score between baseline and post-treatment (C1D21) tumor samples after 1 dose of HER3-DXd
- Overall response rate (ORR) measured at C1D21 by ultrasound
- Change in CelTIL score according to baseline expression levels of ERBB3 mRNA
- Switch in PAM50 subtypes
- Differential expression of 67 genes at C1D21
- Safety and tolerability

Part B of TOT-HER3

1. Lower dose: $5.6 \mathrm{mg} / \mathrm{Kg}$
2. Response rate assessed by breast US
3. Inclusion of a small subset of TNBC to assess preliminary efficacy in this subtype

BASELINE CHARACTERISTICS

	ALL		
$\mathbf{N = 3 7}$	HR+/HER2- $\mathbf{N}=\mathbf{2 0}$	TNBC $\mathbf{N}=17$	
Age			
Median (Range)	$51(30-81)$	$51(30-65)$	$50(30-81)$
Race N (\%)			
Caucasian	$34(92)$	$17(85)$	$17(100)$
Other	$3(8)$	$3(15)$	0
Menopausal status N (\%)			
Premenopausal	$20(54)$	$12(60)$	$8(47)$
Postmenopausal	$17(46)$	$8(40)$	$9(53)$
Histology N (\%)			
Ductal	$33(89)$	$18(90)$	$15(88)$
Lobular	$2(5)$	$2(10)$	0
Other	$2(5)$	0	$2(12)$
Tumor size by US			
Median, mm (range)	$21(10-80)$	$21.5(10-32)$	$26(11-80)$
T size N (\%)			
cT1	$7(19)$	$5(25)$	$2(12)$
cT2	$25(68)$	$13(65)$	$12(71)$
cT3	$5(14)$	$2(10)$	$3(18)$

	$\begin{gathered} \text { ALL } \\ \mathrm{N}=37 \end{gathered}$	$\begin{gathered} \text { HR+/HER2- } \\ N=20 \end{gathered}$	$\begin{aligned} & \text { TNBC } \\ & \mathrm{N}=17 \end{aligned}$
Nodal status N (\%)			
cNO	28 (76)	17 (85)	11 (65)
cN1	9 (24)	3 (15)	6 (35)
K167 local			
Median, \% (range)	30 (12-95)	20 (12-90)	70 (15-95)
Grade N (\%)			
G1	2 (5)	2 (10)	0
G2	11 (30)	10 (50)	1 (6)
G3	19 (51)	6 (30)	13 (77)
NR	5 (14)	2 (10)	3 (18)
ERIHC N(\%)			
0	17 (46)	0	17 (100)
1-10\%	5 (14)	5 (25)	0
90-100\%	15 (41)	15 (75)	0
PR IHC N (\%)			
0	23 (62)	6 (30)	17 (100)
0-10\%	3 (8)	3 (15)	0
60-100\%	11 (30)	11 (55)	0
HER2 IHC N (\%)			
0	20 (54)	6 (30)	14 (82)
1+	10 (27)	7 (35)	3 (18)
2+	7 (19)	7 (35)	0

PRIMARY ENDPOINT: CELTIL CHANGE AFTER 1 DOSE

ALL ($\mathrm{N}=37$)
Mean difference $=+9.4, p=0.046$

HR+/HER2- $(\mathrm{N}=20)$: Mean diff. $=+2.2$ TNBC ($\mathrm{N}=17$): Mean diff. $=+17.9$

The ORR by Ultrasound at C1D21 was 32\% (35\% in TNBC and 30\% in HR+/HER2-)

The absolute change in CelTIL was associated with ORR ($A \cup C=0.693 ; p=0.049$)

CELTIL VARIATION BY ERBB3 COHORT, PAM50 SUBTYPE AND ROR

Baseline PAM50 Subtypes ($\mathrm{N}=37$)

Baseline PAM50 ROR ($\mathrm{N}=37$)

PAM50 SWITCH AND GENE EXPRESSION CHANGES

PAM50 Subtypes Switched ($\mathrm{N}=37$)

Gene Expression Changes ($\mathrm{N}=37$)

TEAEs N(\%)a	Part B $5.6 \mathrm{mg} / \mathrm{kg}$ $\mathrm{N}=37$	Part A $6.4 \mathrm{mg} / \mathrm{kg}$ $\mathrm{N}=78$
All grades	31 (84)	74 (96)
Grade 4	0	4 (5)
Grade 3	2 (5)	10 (13)
Grade 2	15 (41)	45 (58)
Grade 1	31 (84)	71 (91)
SAEs, all grades	2 (5)	4 (5)
Grade 3	1 (3)	3 (4)

- Lower incidence of hematological and hepatic toxicity compared to Part A ($6.4 \mathrm{mg} / \mathrm{kg}$)
- No ILD events were observed
- No Grade $4 / 5$ events

TEAEs in $>5 \%$ of patients, N(\%)	Part B $5.6 \mathrm{mg} / \mathrm{kg}$ $\mathrm{N}=37$		Part A $6.4 \mathrm{mg} / \mathrm{kg}$ $\mathrm{N}=78$	
	All grades	Grade 3	All grades	Grade ≥ 3
Nausea	24 (65)	1 (3)	52 (67)	0
Fatigue	17 (46)	0	32 (41)	0
Alopecia	10 (27)	NA	28 (36)	NA
Diarrhea	8 (22)	0	19 (24)	1 (1)
Constipation	5 (14)	0	10 (13)	0
Headache	5 (14)	0	2 (3)	0
Transaminitis	5 (14)	0	15(19)	2(3)
Vomiting	4 (11)	0	20 (26)	0
Abdominal pain	3 (8)	0	17 (22)	0
Anemia	3 (8)	0	3 (4)	0
Erythema	3 (8)	0	3 (4)	0
Neutrophil count decrease	0	0	15 (19)	6 (8)

ILD, interstitial lung disease; SAEs, serious adverse events; TEAE, treatment-emergent adverse event.
a Patients could experience ≥ 1 adverse event

- In untreated HER2-negative early-stage breast cancer, a significant increase in CelTIL score is observed after one dose of HER3-DXd at $5.6 \mathrm{mg} / \mathrm{kg}$
- A single dose of HER3-DXd induced a $\sim 30 \%$ ORR (measured by breast US), independently of HR status
- A lower incidence of hematological and hepatic toxicity was observed with 5.6 $\mathrm{mg} / \mathrm{kg}$ of HER3-DXd (Part B) compared with $6.4 \mathrm{mg} / \mathrm{kg}$ (Part A)
- SOLTI-2103 VALENTINE (NCT05569811) neoadjuvant phase II trial ($\mathrm{n}=120$) is currently testing 6 cycles of HER3-DXd at $5.6 \mathrm{mg} / \mathrm{kg}$ in HR+/HER2- breast cancer

HER2 expression and early response to patritumab deruxtecan (HER3-DXd) in early-stage HR+/HER2- breast cancer: A correlative analysis from TOT-HER3 trial

Fara Brasó-Maristany, Mafalda Oliveira, Pablo Tolosa, Mireia Margelí, Josefina Cruz, Salvador Bofill, Juan Miguel Cejalvo, Miriam Arumí de Dios, Maria Vidal, Sònia Pernas, Stephen Esker, Pang-Dian Fan, Anu Santhanagopal, Olga Martínez-Sáez, Guillermo Villacampa, Rodrigo Sánchez-Bayona, Juan M Ferrero-Cafiero, Claudette Falato, Tomás Pascual and Aleix Prat

DECLARATION OF INTERESTS

Consultancy/speaker: Reveal Genomics
Research funding (my institution): Novartis, Roche, AstraZeneca, Daiichi-Sankyo, PUMA
Patents: HER2DX (filed), DNADX (filed)
\checkmark Patritumab deruxtecan (HER3-DXd) is a HER3-directed ADC composed of a human anti-HER3 mAb covalently linked to a topoisomerase I inhibitor payload via a cleavable linker.
\checkmark TOT-HER3 window-of-opportunity trial evaluated a single dose of HER3-DXd in untreated early-stage breast cancer.
\checkmark The primary endpoint was CelTIL score at day 21. CelTIL score is an early readout of drug activity.
\checkmark In TOT-HER3 Part A, CelTIL score increased in most patients and was associated with clinical response at day 21.
*Oral session - $12^{\text {th }}$ May 16.45

Baseline FFPE tumor sample

HER3-DXd single dose
 - Part A: $6.4 \mathrm{mg} / \mathrm{kg}$ IV

 $\mathrm{n}=77$ HR $+/$ HER2- Part B*: $5.6 \mathrm{mg} / \mathrm{kg}$ IV n=20 HR + /HER2 - , $\mathrm{n}=17$ TNBC

Hashimoto et al. Clin Cancer Res 2019. Pascual et al. Front Oncol. 2021. Nuciforo et al. Ann Oncol. 2018. Chic et al. JNCI 2022. Prat et al. ESMO Breast Cancer 2022.

BACKGROUND (II)

\checkmark In our previous preliminary correlative analysis ($n=45$) of TOT-HER3 Part A^{*} :
\checkmark ERBB3/HER3 levels were not associated with CelTIL response
\checkmark High proliferation and non-luminal features
\checkmark Intriguingly, low ERBB2 mRNA levels
were associated with CelTIL response

Do ERBB2/HER2 levels predict early response to HER3-DXd?

Higher CelTIL response to HER3-DXd in tumors with low ERBB2 mRNA/HER2 protein expression

Odds Ratio

Part A ($\mathrm{n}=77$)

ERBB2 mRNA ($\mathrm{A} \cup \mathrm{C}=0.707$)
HER2 amplicon signature ($\mathrm{A} \cup \mathrm{C}=0.742$)
HER2 IHC
ERBB2 mRNA adjusted by HER2 IHC HER2 amplicon adjusted by HER2 IHC HER2 IHC adjusted by ERBB2 mRNA HER2 IHC adjusted by HER2 amplicon signature Part B ($\mathrm{n}=37$)
黄|
ERBB2 mRNA (AUC=0.835)
HER2 amplicon signature (AUC=0.775)
HER2 IHC
ERBB2 mRNA adjusted by HER2 IHC
HER2 amplicon adjusted by HER2 IHC
HER2 IHC adjusted by ERBB2 mRNA
HER2 IHC adjusted by HER2 amplicon signature

Part A + Part B ($\mathrm{n}=114$)

High expression: No CeITIL response High expression: CeITIL response

Higher CeITIL response to HER3-DXd in tumors with low HER2 DNA copy-number signal

Part A ($\mathrm{n}=49$)

Part A ($\mathrm{n}=49$)

17 q 12 CN signal ($\mathrm{A} \cup \mathrm{C}=0.797$) HER2 DNA signature 1 (AUC=0.820) HER2 DNA signature 2 ($\mathrm{A} \cup \mathrm{C}=0.843$) HER2 IHC
17 q 12 CN signal adjusted by HER2 IHC HER2 DNA signature 1 adjusted by HER2 IHC HER2 DNA signature 2 adjusted by HER2 IHC HER2 IHC adjusted by 17 q 12 CN signal HER2 IHC adjusted by HER2 DNA signature 1 HER2 IHC adjusted by HER2 DNA signature 2

17912: CN signal of 1 segment
HER2 DNA signature 1: CN signal of 15 segments HER2 DNA signature 2: CN signal of 33 segments
\checkmark In pre-treatment HER2-negative tumors, low levels of HER2 IHC, ERBB2 mRNA and ERBB2 DNA copy-number signal are associated with early response to HER3-DXd.
\checkmark Genomic tools may be better suited than IHC to capture HER2 expression levels which in turn can help better inform responses to HER3-DXd.
\checkmark Further analyses are needed to understand the mechanistic explanation behind this finding.
\checkmark Further validation in SOLTI-2103 VALENTINE (NCT05569811).

A randomized phase 2 trial of coadjuvant multi-agent chemotherap or patritumab deruxtecan (HER3-DXd; U3-1402) +1 -endocrine therapy for high riskhormone receptor positive (HR+/HER2.) early breast cancer: SOLTL2103 VALENTINE trial

Abewnc
$155 T \mathrm{P}$

Background

The decsion regarding meosdijuant trealmest for hightrisk HR+/HEP2 EBC remams a
chatenpa

 profike al patients wen HR H H HR2 negaime early breasil cancer!

Figure 1. ORR, subtype and ERBB3 Groups by Percent Change in CelTL. Score From Baseise

These deta have informed the dessgn of the VALENTIVE tral of HER3-DXd in the neosifivant

What does VALENTNE add?

- First triel hesting a ful course of neasdinvart HERZ-DXd treatment Mpatients with earty stage breest cancer
- Evalustes te cimical beneftit and bidogical eftects of HER3-DXd werl or withoue - Evaluzes te cinical benetit anchiducgical ertects of
- Looks at the velue of HER3-DXd in iong-term efficacy outcomes Le .DFS

 - Translationed data wal be generated ta supporime devetopments of biomarkers torHER3| Trens |
| :---: |
| Dxa |

V/ALEN

TINE

valentine is a parallel, gree-am rancomiced VALENTINE A a paralel, Etree-am, rancomimed HER3-DXd in petents wim primary operabie
HR+HER2-negsive preast cancer wig KGT
 signature)
A total of 120 treemert nine pts wit be
rencomin assigned 7 a 2.21 to esch of ge tiree

Affer camolelion of the assigned nelaquivanit realmerc. pubenss wil unsergo surgery
Adjuvart endocine herapy, radiotherapy and or
chemotheregy attar study end oft reatront will be achininstared as per investgetotor's chooce.
All palients wit be folawed for iofs status every
12 monels. for 5 years afler the last palient is 12 monely
enroved
Baseine. CZOI ana poss-reasinent prmary breest tamor tssue samplas mill be used for
moleculer characterizetion as wall as seral tiood

Endpoints

able 1. Bion

Lecally asses HER2 (SCR)

- TLs, Tumor Cellitarity and
CeTTL (SCR, C2D1, SUR).
- Gene expression including ERBB3 and research-based

PAM50 intrinsic subtype (SCR, | Padast intrinsic |
| :--- |
| C2DI, |

DNAseq (SCR, C2D1, SUR) - HER3 HHC (SCR, C2D1, SUR) - Serum drug concentration - PK - DXd IHC (SCR, C2D1, SUR).

- vH2AX IHC (SCR, C2DI, SUR).
- ctDNA (SCR, C2D1, SUR, FUP) Sambulva timepounts: Scresnumg SCR: Cylef ofay : Cr Dill: Cycto

Primary endpoint
- Rate of pCRee: (yp TOM: ypNo) at surgery

Secondary endpoints

- Ratin of residuaz cancer burten keraly assessed by MO Anierson critema

- Tunnor owral wbijective resporses rate (ORR) by Modifind RECIST 1.1 - iDFS rata al 3 yoars and 5 years lollaw upa
 Correation of PCR with beseline levels of both HER3 receptor expression by $1 H C$ and
ERER3 mRNA expresson and with changes between beseline and C2D.

Change in Kib7 IHC from taseline to C2D1 and es correlation with: PCR RCB, ORR and IDFS.

- Change from taseline in EORTC QLQC30 and EORTC LLL BRe3 scorres.

[^0]: 'In the cervical cohort, 5 patients with IHC 1+ status were included per protocol. dIncludes patients whose samples were not evaluable and may have included patients who did not provide a sample for central testing ECOG PS, Eastern Cooperative Oncology Group performance status; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry.

[^1]: ${ }^{\text {an }}$ Analysis of response and complete response, confirmed partial response or stable disease.

[^2]: Yasushi Goto, MD, PhD, ${ }^{1}$ Wu Chou Su, MD, ${ }^{2}$ Benjamin Levy, MD, ${ }^{3}$ Olivier Rixe, MD, PhD, ${ }^{4,5}$ Tsung Ying Yang, MD, PhD, ${ }^{6}$ Anthony Tolcher, MD, ${ }^{7}$ Yanyan Lou, MD, PhD, ${ }^{8}$ Yoshitaka Zenke, MD, PhD, ${ }^{9}$ Panayiotis Savvides, MD, ${ }^{10}$ Enriqueta Felip, MD, PhD, ${ }^{11}$ Manuel Domine, MD, PhD, ${ }^{12}$ Konstantinos Leventakos, MD, PhD, ${ }^{13}$ Mariano Provencio Pulla, MD, PhD, ${ }^{14}$ Atsushi Horiike, MD, PhD, ${ }^{15}$ Edward Pan, MD, ${ }^{5}$ Daisy Lin, PhD, ${ }^{5}$ Jessie Gu, PhD, MS, ${ }^{5}$ Priyanka Basak, MD, MBE, ${ }^{5}$ Michael Chisamore, PhD, ${ }^{16}$ Luis Paz-Ares, MD, PhD ${ }^{17}$

[^3]: $5.6 \mathrm{mg} / \mathrm{kg}$ dose is based on prior exposure-response analysis of efficacy in NSCLC; ABC: advanced breastcancer; CBR: clinical beneft rate; CTC: circulating tumor cells; DOR: duration of response; ET: endocrine therapy, T-DXd: Trastuzumab-deruxtecan; ORR: objective response rate; OS: overall survival, PFS. progression-free survival, PK. Pharmacokinetics, PD. pharmacokynamics,

[^4]: § § HER3-expression prescreening was removed by amendment on April $2^{\text {st }}, 2022$
 § on archival tumor samples; *on 54 patient;; ** on 52 patients;*** 3 patients received more than 1 CDK4/6inh ISH: in situ hybridization

[^5]: *By FACS (FluorescentActivated Cell Sorting) almost all detectable HER3+ CTCs were CK+
 HER3, Thermofisher clone RTJ2 (ref MA1-860)
 19 patients with assessable CTC were HER3+++ at baseline (included before the study amendment)

[^6]: Volcano plot of differentially expressed genes between on-treatment and baseline in responders (PR at 3 mos) and non-responders (SD/PD at 3 mos). The red dots indicate genes with a adjusted p-value <0.05. The red dots on the right quadrant of the figures are up-regulated the ones on the left are downregulated. The green dots represent the genes that did not reach the adjusted p-value <0.05

